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1. Introduction

Non-perturbative investigations of lattice regularized Higgs-Yukawa models as a limit of

the electroweak sector of the Standard Model have been subject of many investigations

in the early 1990’s, see e.g. the review articles of refs. [1 – 7]. These lattice studies were

motivated by the interest in a better understanding of the fermion mass generation via

the Higgs mechanism on a non-perturbative level. In addition, the focus has been on the

determination of bounds on the Higgs mass and the Yukawa couplings which translate

directly into bounds on the - at that time not yet discovered - top quark mass. However,

these investigations were blocked, since the influence of unwanted fermion doublers could

not successfully be suppressed. Moreover, the lattice models of these studies suffered from

the lack of chiral symmetry. The latter, however, would be indispensable for a consistent

lattice regularization of chiral gauge theories such as the Standard Model of electroweak

interactions.

Here, we want to extend these earlier investigations in a new direction in order to over-

come the previously encountered drawbacks by following the proposition of Lüscher [8] for a

chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator [9].

Within this model an exact lattice chiral symmetry can be established while suppressing

the fermion doublers at the same time. This is possible despite of the Nielsen-Ninomiya

theorem [10], since the established lattice chiral symmetry is not the continuum chiral sym-

metry itself, but recovers the latter symmetry only in the continuum limit. We consider

here a Higgs-Yukawa model including only the two heaviest fermions, i.e. the top-bottom

doublet, and the Higgs fields. This simplification is reasonable, since the fermion-Higgs

coupling is proportional to the fermion mass and hence small for the light doublets. We
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also neglect any gauge fields within this model, since they can be taken into account via

perturbation theory.

As a first step towards a numerical investigation of this Higgs-Yukawa model we begin

by studying its phase structure. Here we present an analytical investigation of the phase

diagram in the large Nf -limit following refs. [11, 12]. We refer the reader to these references

for earlier works on lattice Higgs-Yukawa models. (See also ref. [13] for a first account of

our work.) In the present paper we access the phase structure of the model at small and at

large values of the Yukawa coupling constant, putting particular emphasis on the existence

of a symmetric phase also in the strong Yukawa coupling regime. The latter strong coupling

regime of a closely related, chirally invariant Higgs-Yukawa model in two dimensions was

also studied in the recent work [14] and corresponding Monte-Carlo simulations, performed

in that model, support the existence of such phase [15]. Extensions of our present paper,

in particular addressing the question of lower and upper bounds on the Higgs boson mass,

will be discussed in forthcoming publications.

We remark here that for the latter reasons we are eventually interested in the physical

setting Nf = 1. Although the large Nf analysis is not supposed to match the Nf = 1

case well on a quantitative level, we expect the large Nf phase diagram to have the same

qualitative structure. Thus, it can provide an useful orientation also for the case of Nf = 1.

The results from the large Nf analysis performed here have been confronted with numerical

simulations in ref. [16] and indeed, a good qualitative agreement has been found at small

values of Nf .

The outline of this paper is as follows: In section 2 we briefly describe the Higgs-

Yukawa model considered here. In the following section 3 we derive an expression for the

effective potential in terms of the amplitudes of the constant and staggered modes of the

Higgs field, which is a reasonable approximation at small values of the Yukawa and quartic

coupling constants. We then present the resulting phase diagram in the large Nf -limit

and determine the order of the occurring phase transitions. The phase structure in the

regime of large values of the Yukawa coupling constant and arbitrary quartic coupling

constants is then accessed by means of a different large Nf -limit presented in section 4.

We show that a symmetric phase also exists at large Yukawa coupling constants. On small

lattices, however, this symmetric phase is shadowed by finite volume effects preventing the

expectation value of the Higgs field from vanishing. We then end with a short summary

and outlook.

2. The model

Aspiring to investigate the Higgs Sector of the Standard Model of electroweak interactions,

we consider here a four-dimensional, chirally invariant lattice Higgs-Yukawa model con-

taining one four-component, real Higgs field Φ and a number of Nf fermion doublets. The

latter are represented by eight-component spinors ψ(i), ψ̄(i) with i = 1, . . . , Nf . However,

these Nf doublets are all degenerated within this model and correspond to the heaviest

fermion doublet only, i.e. to the top-bottom doublet. This is a reasonable simplification due

to the fermion-Higgs coupling being proportional to the fermion mass. We have introduced
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the fermion doublet number Nf nonetheless, because it will be possible to access the model

analytically in the limit of large numbers of (degenerated) fermion doublets.

Furthermore, there are also Nf auxiliary fermionic doublets χ(i), χ̄(i) present in the

model, which serve as a construction tool for the creation of a chirally invariant Yukawa

interaction term. However, once the chiral invariance is established, these unphysical fields

can be integrated out leading to a more complicated model depending then only on the

Higgs field Φ and the Nf physical fermion doublets ψ(i). The partition function of the

given model can be written as

Z =

∫

DΦ

Nf∏

i=1

[

Dψ(i) Dψ̄(i) Dχ(i) Dχ̄(i)
]

exp
(

−SΦ − Skin
F − SY

)

(2.1)

with the total action being decomposed into the Higgs action SΦ, the kinetic fermion action

Skin
F , and the Yukawa coupling term SY . It should be stressed once again that no gauge

fields are included within this model.

The four-dimensional space-time lattice, that the model is discretized upon, is assumed

to have L lattice sites per dimension such that its total volume is V = L4. Here we allow

for both, finite size lattices with even L ∈ N as well as lattices with infinite extension, i.e.

L = ∞, and we set the lattice spacing a to unity for convenience. The kinetic fermion

action describing the propagation of the physical fermion fields ψ(i),ψ̄(i) is then given in

the usual manner according to

Skin
F =

Nf∑

i=1

∑

n,m

ψ̄(i)
n D(ov)

n,mψ(i)
m − 2ρχ̄(i)

n 1n,mχ(i)
m (2.2)

where the four-dimensional coordinates n,m as well as all field variables and coupling

constants are given in dimensionless lattice units throughout this paper. Here, the (doublet)

Dirac operator D(ov) = D̂(ov)⊗D̂(ov) is given by the Neuberger overlap operator D̂(ov), which

is related to the Wilson operator D̂(W ) = γE
µ

1
2(∇f

µ + ∇b
µ) − r

2∇b
µ∇f

µ by

D̂(ov) = ρ

{

1 +
Â

√

Â†Â

}

, Â = D̂(W ) − ρ, 1 ≤ ρ < 2r (2.3)

with ∇f
µ, ∇b

µ denoting the forward and backward difference quotients, respectively. In

absence of gauge fields the eigenvectors and eigenvalues of the Neuberger operator are

explicitly known. In momentum space with the allowed four-component momenta

p ∈ P =

{

(−π, π]⊗4 : for L = ∞
{2πn/L : n ∈ N0, n < L}⊗4 : for L < ∞ (2.4)

the eigenvectors of the doublet operator D(ov) are given as

Ψp,ζǫk
n = eip·n · uζǫk(p), uζǫk(p) =

√

1

2

(

uǫk(p)

ζuǫk(p)

)

, ζ = ±1, ǫ = ±1, k ∈ {1, 2} (2.5)
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with uǫk(p) denoting the usual four-component spinor structure

uǫk(p) =

√

1

2

(
ξk

ǫ p̃Θ̄√
p̃2

ξk

)

for p̃ 6= 0 and uǫk(p) =

√

1

2

(

ξk

ǫξk

)

for p̃ = 0, (2.6)

respectively. Here ξk ∈ C2 are two orthonormal vectors and the four component quater-

nionic vectors Θ, Θ̄ are defined as Θ = (1,−i~τ) and Θ̄ = (1,+i~τ ) = Θ† with ~τ denoting

the vector of Pauli matrices. It is well known that the eigenvalues ν±(p) of D̂(ov) with

Im[ν±(p)] ≷ 0 form a circle in the complex plane, the radius of which is given by the

parameter ρ. These eigenvalues are explicitly given by

νǫ(p) = ρ + ρ · ǫi
√

p̃2 + 2rp̂2 − ρ
√

p̃2 + (2rp̂2 − ρ)2
, p̃µ = sin(pµ), p̂µ = sin

(pµ

2

)

. (2.7)

The auxiliary fields χ(i) on the other hand do not propagate at all and their contribution

to Skin
F is chosen such that the model will obey an exact lattice chiral symmetry.

The Higgs field couples to the fermions according to the Yukawa coupling term

SY = yN

∑

n,m

Nf∑

i=1

(ψ̄(i)
n + χ̄(i)

n )

[1n,m
(1 − γ5)

2
φn + 1n,m

(1 + γ5)

2
φ†

n

]

︸ ︷︷ ︸

Bn,m

(ψ(i)
m + χ(i)

m ) (2.8)

where yN denotes the Yukawa coupling constant and Bn,m will be referred to as Yukawa

coupling matrix. Here the Higgs field Φn is rewritten as a quaternionic, 2 × 2 matrix

φn = Φ0
n1− iΦj

nτj acting on the SU(2) index of the fermionic doublets. Due to the chiral

character of this model, left- and right-handed fermions couple differently to the Higgs

field, as can be seen from the appearance of the projectors (1± γ5)/2 in the Yukawa term.

Multiplying out the involved Gamma- and Pauli-matrices one can rewrite the Yukawa

coupling matrix in the compactified form

Bm,n = δm,n · B̂(Φn), B̂(Φn) =

(

Φ0
n1+ iΦ3

nγ5 Φ2
nγ5 + iΦ1

nγ5

−Φ2
nγ5 + iΦ1

nγ5 Φ0
n1− iΦ3

nγ5

)

(2.9)

being block diagonal in position space. The model then obeys an exact, but lattice modified,

chiral symmetry according to

δψ(i) = iǫ

[

γ5

(

1 − 1

2ρ
D(ov)

)

ψ(i) + γ5χ
(i)

]

, δχ(i) = iǫγ5
1
2ρD(ov)ψ(i), δφ = 2iǫφ (2.10)

δψ̄(i) = iǫ

[

ψ̄(i)

(

1 − 1

2ρ
D(ov)

)

γ5 + χ̄(i)γ5

]

, δχ̄(i) = iǫψ̄(i) 1
2ρD(ov)γ5, δφ† = −2iǫφ†

(2.11)

with ǫ denoting here the infinitesimal parameter of the chiral transformation. Since the

(here omitted) lattice spacing a appears in front of the Dirac operators, this exact symmetry

recovers the continuum chiral symmetry (after having integrated out the auxiliary fermion

fields) in the continuum limit [8].
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Finally, we use a slightly unusual notation for the Higgs action SΦ given by

SΦ = −κN

∑

n,µ

Φ†
n [Φn+µ̂ + Φn−µ̂] +

∑

n

Φ†
nΦn + λN

∑

n

(

Φ†
nΦn − Nf

)2
(2.12)

where κN denotes the hopping parameter and λN is the quartic coupling constant. This

notation with Nf appearing in the quartic coupling term (which turns out to be more

convenient for the later analytical considerations) can easily be shown to be equivalent to

the more commonly used lattice version of the ϕ4-action

Sϕ = −κ
∑

n,µ

ϕ†
n [ϕn+µ̂ + ϕn−µ̂] +

∑

n

ϕ†
nϕn + λ

∑

n

(

ϕ†
nϕn − 1

)2
(2.13)

by rescaling the coupling constants λ, κ, y and the Higgs field ϕ according to

Φ = C · ϕ, λN =
λ

C4
, κN =

κ

C2
, yN =

y

C
, (2.14)

where the constant C has to obey the condition

C2 − 2λNNfC2 = 1 − 2λ. (2.15)

Furthermore, this latter action in eq. (2.13) can also easily be connected to the usual

continuum notation

Sϕ̂ =
∑

n

{
1

2

(

∇f
µϕ̂

)†

n
∇f

µϕ̂n +
1

2
m2

0ϕ̂
†
nϕ̂n + λ0

(

ϕ̂†
nϕ̂n

)2
}

, (2.16)

which explicitly involves a bare mass m0 and the forward difference quotient ∇f
µ. This

connection is established by scaling the field and coupling constants according to

ϕn =
ϕ̂n

Ĉ
, λ = Ĉ4 · λ0, κ =

Ĉ2

2
, y = y0 · Ĉ (2.17)

where the constant Ĉ has to obey the relation

1 = Ĉ2 ·
(

m2
0 + 8

2
+ 2λ0Ĉ

2

)

. (2.18)

For the further analytical treatment of this model we integrate out the fermionic de-

grees of freedom leading to an effective Higgs model given by

Z =

∫

DΦ exp (−Seff [Φ]) (2.19)

with the effective action Seff [Φ] defined as

exp (−Seff [Φ]) =

∫ Nf∏

i=1

[

Dψ(i)Dψ̄(i)Dχ(i)Dχ̄(i)
]

exp
(

−SΦ − Skin
F − SY

)

. (2.20)

By applying some adequate substitutions the Grassmann integrations can be performed

allowing to write the effective action Seff [Φ] in terms of fermionic determinants according

to

Seff [Φ] = SΦ[Φ] − Nf · log
[

det
(

yNBD(ov) − 2ρD(ov) − 2ρyNB
)]

. (2.21)
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3. Large Nf-limit for small Yukawa coupling parameters

In this section we will derive the phase structure of the introduced Higgs-Yukawa model in

the large Nf -limit for small values of the Yukawa and quartic coupling constants. The idea

is to factorize the number of involved fermion doublets Nf out of the effective action Seff [Φ],

since the integral over all Higgs field configurations in eq. (2.19) can then be reduced to

the sum over all absolute minima of the effective action when sending Nf to infinity. This

factorization can be achieved by scaling the coupling constants and the Higgs field itself

according to

yN =
ỹN

√
Nf

, λN =
λ̃N

Nf
, κN = κ̃N , Φn =

√

Nf · Φ̃n , (3.1)

where the quantities ỹN , λ̃N , κ̃N , and Φ̃n are kept constant in the limit Nf → ∞.

One is thus left with the problem of finding the absolute minima of Seff [Φ] in terms of

the latter quantities. In general the operators B and D(ov) do not share a common eigen-

vector basis making the analytical evaluation of the determinant in eq. (2.21) impossible

for general, space-time dependent Higgs fields. However, for sufficiently small values of

the Yukawa and quartic coupling constants the kinetic term of the Higgs action becomes

dominant allowing to restrict the search for the absolute minima of Seff [Φ] to the ansatz

Φn = Φ̂ ·
√

Nf ·
(

m + s · (−1)

P

µ
nµ

)

(3.2)

taking only a constant and a staggered mode of the Higgs field into account. Here Φ̂ ∈ IR4

denotes a constant 4-dimensional unit vector (|Φ̂| = 1), and we will refer to m, s ∈ IR in

the following as magnetization and staggered magnetization, respectively.

For the actual evaluation of the effective action we use the fact that the matrix B now

has a diagonal-plus-subdiagonal-block-structure in momentum space due to the chosen

ansatz for the Higgs field according to

[

D(ov) − yN

2ρ
B

(

D(ov) − 2ρ
)]

(p1, p2) = − ỹN

2ρ

[

m · δ(p1, p2) · B̂(p2)(Φ̂) ·
(

D(ov)(p2) − 2ρ
)

+s · δ(p1, ℘2) · U(p1, p2) · B̂(p2) ·
(

D(ov)(p2) − 2ρ
)

]

+δ(p1, p2) · D(ov)(p2) , (3.3)

where the diagonal part is caused by the constant mode of the Higgs field, while the sub-

diagonal contribution is created by the staggered mode. In eq. (3.3) this is expressed by

℘2 denoting the shifted momenta ℘2 = p2 +(π, π, π, π), where adequate modulo-operations

are implicit to guarantee that ℘2 ∈ P. The matrices U(p1, p2), D(ov)(p), and B̂(p) are

8 × 8-matrices with the indices ζ1ǫ1k1, ζ2ǫ2k2 and denote the spinor basis transformation

matrix

U(p1, p2)ζ1ǫ1k1,ζ2ǫ2k2 =
[

uζ1ǫ1k1(p1)
]†

uζ2ǫ2k2(p2), (3.4)

– 6 –
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the Dirac matrix

D(ov)(p)ζ1ǫ1k1,ζ2ǫ2k2 = δǫ1,ǫ2 · δk1,k2 · δζ1,ζ2 · νǫ1(p), (3.5)

and the Yukawa coupling matrix

B̂(p)(Φ̂)ζ1ǫ1k1,ζ2ǫ2k2 =
[

uζ1ǫ1k1(p)
]†

B̂(Φ̂)uζ2ǫ2k2(p) (3.6)

= δk1,k2

[

δǫ1,ǫ2δζ1,ζ2 · Φ̂0 + δǫ1,−ǫ2

{

iζ2δζ1,ζ2Φ̂
1 + δζ1,−ζ2

[

iΦ̂3 + ζ2Φ̂
2
]}]

,

respectively. Due to this diagonal-subdiagonal-block-structure the determinant in eq. (2.21)

can thus be factorized by merging the four 8×8 blocks, which correspond to the momentum

indices (p, p), (℘, p), (p, ℘), and (℘,℘). Up to some constant terms, which are independent

of Φ, we can thus rewrite the effective action as

Seff [Φ] = SΦ[Φ] − Nf · log
[

det

(

D(ov) − yN

2ρ
· B ·

(

D(ov) − 2ρ
))]

(3.7)

= SΦ[Φ] − Nf · log
[

∏

p∈P
0≤p3<π

det

(

D(ov)(p) ⊗D(ov)(℘) − ỹN

2ρ
M(p)

)]

, (3.8)

where the restriction 0 ≤ p3 < π has just been introduced to prevent the double counting

that would occur if one would have performed the product over all p ∈ P after having

merged the blocks. Here M(p) denotes these merged, momentum dependent 16 × 16

matrices given by

M(p) =

(

M1,1(p) M1,2(p)

M2,1(p) M2,2(p)

)

(3.9)

with

M1,1(p) = m · B̂(p)(Φ̂) ·
(

D(ov)(p) − 2ρ
)

, (3.10)

M1,2(p) = s · U(p, ℘) · B̂(℘)(Φ̂) ·
(

D(ov)(℘) − 2ρ
)

, (3.11)

M2,1(p) = s · U(℘, p) · B̂(p)(Φ̂) ·
(

D(ov)(p) − 2ρ
)

, (3.12)

M2,2(p) = m · B̂(℘)(Φ̂) ·
(

D(ov)(℘) − 2ρ
)

. (3.13)

The expression in eq. (3.8) can be written more compactly, taking the fact into account

that the matrices involved in that expression are diagonal with respect to the index k due

to eq. (3.5), eq. (3.6) and

U(p, ℘)ζ1ǫ1k1,ζ2ǫ2k2 = δζ1,ζ2 · δǫ1,−ǫ2 · δk1,k2. (3.14)

Since one easily finds that the determinant in eq. (3.8) is invariant under the permutation

p ↔ ℘, one can extend the product in that equation, which is performed only over one half

– 7 –
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of the whole momentum space, again to the full momentum space P by factorizing out the

identity δk1,k2. One then obtains for the effective action

Seff [Φ] = SΦ[Φ] − Nf · log




∏

p∈P

det

(

D̆(ov)(p) ⊗ D̆(ov)(℘) − ỹN

2ρ
M̆(p)

)


 , (3.15)

with the definitions

D(ov)(p) = δk1,k2 · D̆(ov)(p), M(p) = δk1,k2 · M̆(p), and Ma,b(p) = δk1,k2 · M̆a,b(p), (3.16)

where a, b ∈ {1, 2}. Selecting a special order for the indices ζǫ according to {++,+−,

−+,−−} the latter four 4 × 4 matrices are explicitly given by

M̆1,1(p) = m ·








Φ̂0ω+(p) iΦ̂1ω−(p) 0 (iΦ̂3 − Φ̂2)ω−(p)

iΦ̂1ω+(p) Φ̂0ω−(p) (iΦ̂3 − Φ̂2)ω+(p) 0

0 (iΦ̂3 + Φ̂2)ω−(p) Φ̂0ω+(p) −iΦ̂1ω−(p)

(iΦ̂3 + Φ̂2)ω+(p) 0 −iΦ̂1ω+(p) Φ̂0ω−(p)








(3.17)

M̆1,2(p) = s ·








iΦ̂1ω+(℘) Φ̂0ω−(℘) (iΦ̂3 − Φ̂2)ω+(℘) 0

Φ̂0ω+(℘) iΦ̂1ω−(℘) 0 (iΦ̂3 − Φ̂2)ω−(℘)

(iΦ̂3 + Φ̂2)ω+(℘) 0 −iΦ̂1ω+(℘) Φ̂0ω−(℘)

0 (iΦ̂3 + Φ̂2)ω−(℘) Φ̂0ω+(℘) −iΦ̂1ω−(℘)








(3.18)

where the abbreviation ωǫ(p) = νǫ(p) − 2ρ was used. The remaining matrices M̆2,2(p)

and M̆2,1(p) are obtained from M̆1,1(p), M̆1,2(p) by interchanging p and ℘. Using some

algebraic manipulation package, the determinant of the 8 × 8 matrix in eq. (3.15) can be

computed leading to the final expression for the effective action

Seff [Φ] = SΦ[Φ]−Nf ·
∑

p∈P

log

[(
∣
∣ν+(p)

∣
∣·

∣
∣ν+(℘)

∣
∣+

ỹ2
N

4ρ2

(
m2−s2

)
·
∣
∣ν+(p) − 2ρ

∣
∣·

∣
∣ν+(℘) − 2ρ

∣
∣

)2

+m2 ỹ2
N

4ρ2

( ∣
∣ν+(p) − 2ρ

∣
∣ ·

∣
∣ν+(℘)

∣
∣ −

∣
∣ν+(℘) − 2ρ

∣
∣ ·

∣
∣ν+(p)

∣
∣

)2
]2

. (3.19)

With the ansatz in eq. (3.2) the Higgs field action SΦ can also be written in terms of the

quantities m and s. One easily finds

SΦ = Nf · L4 ·
{

− 8κ̃N

(

m2 − s2
)

+ m2 + s2 + λ̃N

(

m4 + s4 + 6m2s2 − 2
(
m2 + s2

) )
}

.

(3.20)

Two remarks are in order here for the orientation of the reader.

(i) The resulting phase structure in the large Nf -limit can now be obtained by minimiz-

ing the effective action with respect to m and s. In principle one could derive the

– 8 –



J
H
E
P
0
9
(
2
0
0
7
)
0
4
1

λ̃N = 0.1 λ̃N = 0.3

κ̃N

ỹN

SYM FM

AFM AFM

←FI

κ̃N

ỹN

SYM FM

AFM AFM

FI→

Figure 1: Phase diagrams with respect to the Yukawa coupling constant ỹN and the hopping

parameter κ̃N for the constant quartic couplings λ̃N = 0.1 (left) and λ̃N = 0.3 (right). The black

line indicates the first order phase transitions. Both phase diagrams were determined for L = ∞.

An explanation of the occurring phases is given in the text.

corresponding phase diagrams for all values of the quartic coupling constant λ̃N > 0.

However, as one can easily find from eq. (2.15) the case λ̃N > 0.5 corresponds to

the strong self-coupling regime λ ≫ 1 of the physically underlying ϕ4-theory given in

eq. (2.13) for large values of Nf . In that regime it is no longer reasonable to evaluate

the effective action due to the strong self-interaction of the Higgs-field in that case.

We therefore restrict the allowed range for the quartic coupling to 0 < λ̃N < 0.5,

which corresponds to the weak self-coupling regime of the physical model in eq. (2.13).

(ii) The sum over all allowed momenta P in eq. (3.19) becomes a four-dimensional mo-

mentum integral over P for L = ∞ according to

1

L4

∑

p∈P

. . . →
∫

p∈P

d4p

(2π)4
. . . (3.21)

which was actually used in the numerical evaluation of the effective action.

We now present the phase diagrams for λ̃N = 0.1 and λ̃N = 0.3 in figure 1. These

phase diagrams were calculated for an infinite lattice, i.e. for L = ∞. Here we distinguish

between the following four phases:

(i) The symmetric phase (SYM): m = 0, s = 0

(ii) The ferromagnetic phase (FM): m 6= 0, s = 0

(iii) The anti-ferromagnetic phase (AFM): m = 0, s 6= 0

(iv) The ferrimagnetic phase (FI): m 6= 0, s 6= 0

– 9 –
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In both cases, i.e. λ̃N = 0.1 and λ̃N = 0.3, one finds a symmetric phase approximately

centered around κ̃N = 0 at sufficiently small values of the Yukawa coupling constant ỹN , as

one would have expected, since the model becomes the pure φ4-theory in the limit ỹN → 0.

From the same consideration one would also expect the accompanying phase transitions

to be of second order. This is indeed the case as can clearly be seen in figure 2 showing

the expectation values of the amplitudes m and s for different values of ỹN as obtained

in the minimization process. With increasing ỹN the symmetric phase bends downwards

to negative values of the hopping parameter κ̃N , unless it either hits a first order phase

transition to an anti-ferromagnetic phase (black line in figure 1), the order of which can

be determined from figure 3 (this is the case for λ̃N = 0.1), or it eventually goes over into

two FM-FI and FI-AFM second order phase transitions, which is the case for λ̃N = 0.3.

Here we present only the expectation values of m and s for λ̃N = 0.3 and not for λ̃N =

0.1, since the latter plots would not provide qualitatively new information to the reader.

Interestingly, the ferrimagnetic phase (FI) exists in both presented scenarios, i.e. for

λ̃N = 0.1 and λ̃N = 0.3, even deeply inside the anti-ferromagnetic phase region in the

neighbourhood of the first order phase transition boundary.

4. Large Nf-limit for large Yukawa coupling parameters

In this section we will examine the phase diagram of the considered Higgs-Yukawa model

in the regime of large values of the Yukawa coupling constant yN and for arbitrary values

of the quartic coupling constant λN > 0. This will be done in three steps. Firstly, the

effective action is expanded in powers of the inverse coupling constant 1/yN . Taking only

the first non-vanishing contribution of this power series into account and performing the

large Nf -limit in such a way, that the amplitude of the Higgs field is fixed, the model then

effectively becomes an O(4)-symmetric, non-linear sigma-model up to some finite volume

terms. Finally, the phase diagram of the latter sigma-model is determined by an additional

large N -limit, where N denotes here the number of Higgs field components.

For an evaluation of the effective action it is crucial to pay special attention to the

fermion doubler modes

Qπ =
{

Ψp,ζǫk : pµ ∈ {0, π}, p 6= 0, ζ, ǫ = ±1, k ∈ {1, 2}
}

(4.1)

which we will refer to as π-modes in the following. Given these 120 modes one can define

the corresponding projection operator

Pπ =
∑

Ψ∈Qπ

ΨΨ† (4.2)

projecting to the sub-space Vπ = span(Qπ) spanned by Qπ. Using this notation one can

easily establish the very helpful relation

det (E (1− Pπ) + PπFPπ) = det ((1− Pπ) E (1− Pπ) + PπFPπ)

= det ((1− Pπ) E + PπFPπ) = det′ (E) · det∗ (F ) (4.3)
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ỹN = 3.0 ỹN = 3.5 ỹN = 4.0

ỹN = 1.5 ỹN = 2.0 ỹN = 2.5

ỹN = 0.0 ỹN = 0.5 ỹN = 1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

κ̃N

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2: Expectation values for the amplitudes of the constant (m: black curve) and staggered

(s: gray curve) modes for several selected values of the Yukawa coupling constant ỹN and a constant

quartic coupling λ̃N = 0.3. The results were obtained for L = ∞.

where E and F are arbitrary operators defined on the same space V as D(ov) and B. Here

the expression det∗ (F ) denotes the determinant of F with respect to the sub-space Vπ

and det′ (E) is the determinant of E with respect to the complementary space V/Vπ ≡
span(Q/Qπ), where Q denotes the full set of all modes. Using eq. (4.3) several times one

can rewrite the effective action according to

e
−

Seff [Φ]−SΦ
Nf = det

(

yNB
(

D(ov) − 2ρ
)

− 2ρD(ov)
)

(4.4)

=
(
−4ρ2

)120 · det′
(

yNB′
(

D′(ov) − 2ρ1′) − 2ρD′(ov)
)

=
(
−4ρ2

)120 ·det′(yN)·det′
(

D′(ov)−2ρ1′)·det′
(

B′− 2ρ

yN
D′(ov)

(

D′(ov) − 2ρ1′)−1
)

= Const · det

(

B − (B − 1)Pπ − 2ρ

yN
A

)

= Const · det (B)· det
(1−(1−B−1

)
Pπ

)
·det

(1− 2ρ

yN
B−1A

[1−(1−B−1
)
Pπ

]−1
)
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ỹN = 7.5 ỹN = 8.0 ỹN = 9.0

ỹN = 6.0 ỹN = 6.5 ỹN = 7.0

ỹN = 4.5 ỹN = 5.0 ỹN = 5.5
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Figure 3: Expectation values for the amplitudes of the constant (m: black curve) and staggered

(s: gray curve) modes for several selected values of the Yukawa coupling constant ỹN and a constant

quartic coupling λ̃N = 0.3. The results were obtained for L = ∞.

where D′(ov), B′, and 1′ denote the restriction of the operators D(ov), B, and 1 to the sub-

space V/Vπ. This restriction is introduced, since it guarantees D′(ov)−2ρ1′ to be invertible.

The operator A is then defined by extending the domain of the inverse of D′(ov) − 2ρ1′
again to the full space V by inserting the projector 1− Pπ according to

A = D′(ov) ·
[

D′(ov) − 2ρ1′]−1
· (1− Pπ) , (4.5)

which is well-defined and finite over the whole space V . The last determinant in eq. (4.4)

can further be reduced by using the result

[1−
(1− B−1

)
Pπ

]−1
= 1− Pπ + Pπ

(
1 − Pπ + PπB−1Pπ

)−1
Pπ

− (1− Pπ)B−1Pπ

(
1 − Pπ + PπB−1Pπ

)−1
Pπ (4.6)
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and by applying again relation (4.3) leading to the compact notation for the effective action

Seff [Φ] = SΦ − Nf · log det (B) − Nf · log det∗
(
B−1

)
− Nf · log det∗

(1+
2ρ

yN
F [Φ]

)

− Nf · log det

(1− 2ρ

yN
A · B−1

)

, (4.7)

with the abbreviation F [Φ] defined as the somewhat lengthy expression

F [Φ] =

[1− 2ρ

yN
B−1A

]−1

B−1AB−1Pπ

[1− Pπ + PπB−1Pπ

]−1
. (4.8)

However, the latter determinants det∗ only give rise to some finite volume effects, since

these determinants are only performed over the 120-dimensional sub-space Vπ. Their con-

tributions to the effective action do therefore not scale proportional to L4 as the lattice size

increases in contrast to all other appearing terms. We will come back to discussing these

finite volume effects later. Here, we will first continue with the evaluation of the last term

in eq. (4.7) by rewriting the corresponding trace as a power series in the inverse coupling

constant 1/yN according to

Tr log

(1− 2ρ

yN
A · B−1

)

= −Tr

∞∑

r=1

2r

r

(
ρ

yN

)r
[
AB−1

]r
(4.9)

and by eventually cutting off this power series after the first non-vanishing term, which is

well-justified for sufficiently large yN . For our purpose of establishing the desired connection

to a sigma-model it is most convenient to evaluate these expressions in position space. Here

the matrix B−1 is block diagonal and explicitly given by

B−1 = B† ·
(

BB†
)−1

, B−1
m,n = δm,n · B̂(Φ∗

n/|Φn|2), (4.10)

where the notation (Φ∗
n)0 = Φ0

n, (Φ∗
n)i = −Φi

n was used and B̂ was defined in eq. (2.9). In

position space the matrix AB−1 can hence be written as

[
AB−1

]

n1,n2
=

∑

p∈P

∑

ζǫk

eipn1uζǫk(p)αǫ(p)e−ipn2
[
uζǫk(p)

]†

|Ψp,ζǫk|2 B̂(Φ∗
n2

/|Φn2 |2) (4.11)

=
1

L4

∑

p∈P

∑

ζǫk

ζ′ǫ′k′

αǫ(p)eip(n1−n2)uζǫk(p)
(

B̂(p)(Φ∗
n2

/|Φn2 |2)
)

ζǫk,ζ′ǫ′k′

[

uζ′ǫ′k′

(p)
]†

with B̂(p) as defined in eq. (3.6). The scalars αǫ(p) denote the eigenvalues of the anti-

hermitian operator A corresponding to its eigenvectors Ψp,ζǫk and are explicitly given by

iIR ∋ αǫ(p) =

{
νǫ(p)

νǫ(p)−2ρ : p ∈ P, νǫ(p) 6= 2ρ

0 : p ∈ P, νǫ(p) = 2ρ
. (4.12)

The result for the trace of the operator AB−1 is then directly found to be

Tr
[
AB−1

]
=

1

L4

∑

n

∑

p∈P

Tr8×8

[

|Φn|−2A(p)B̂(p)(Φ∗
n)

]

, (4.13)
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which can be generalized to the trace of the r-th power of AB−1 yielding

Tr
[
AB−1

]r
=

∑

n1,...,nr
p1,...,pr∈P

Tr8×8

[
r∏

i=1

eipi(ni−ni+1)

L4
|Φni+1|−2A(pi)

(

B̂(pi)(Φ∗
ni+1

)
)

U(pi, pi+1)

]

(4.14)

where pn+1 is identified with p1, and xn+1 with x1, and the expression A(p) stands for the

diagonal matrix

A(p)ζ1ǫ1k1,ζ2ǫ2k2 = δζ1,ζ2 · δǫ1,ǫ2 · δk1,k2 · αǫ1(p). (4.15)

At this point we refer the interested reader to appendix A for the details of this calculation

in order to sustain the readability of this text.

However, it turns out that the evaluation of eq. (4.14) becomes much easier, if one

inserts the identity U(pi, 0)U(0, pi) at some proper places. The remaining 8 × 8 trace can

then be simplified to

Tr8×8

[
r∏

i=1

A(pi)
(

B̂(pi)(Φ∗
ni+1

)
)

U(pi, pi+1)

]

= Tr8×8

[
r∏

i=1

A(0)(pi)
(

B̂(0)(Φ∗
ni+1

)
)
]

,

(4.16)

where the representation B̂(0)(Φ∗
n) of the Yukawa coupling matrix can directly be taken

from eq. (3.6) and A(0)(p) is given by

A(0)(p) = U(0, p)A(p)U(p, 0)

=
α+(p)
√

p̃2
·
(

p̃0 −~̃p~Θ
~̃p~Θ −p̃0

)

⊗
(

p̃0 −~̃p~Θ
~̃p~Θ −p̃0

)

(4.17)

where the relation α+(p) = −α−(p) has implicitly been used. Due to the insertion of the

spinor basis transformation matrices U(pi, 0) and U(0, pi) the sums over the momenta in

eq. (4.14) factorize now according to

Tr
[
AB−1

]r
=

∑

n1,...,nr

Tr8×8

[
r∏

i=1




∑

pi∈P

eipi(ni−ni+1)

L4
A(0)(pi)



 |Φni+1|−2
(

B̂(0)(Φ∗
ni+1

)
)

︸ ︷︷ ︸

Tni,ni+1

]

(4.18)

where each momentum sum is a four-dimensional Fourier transform of an anti-symmetric

and purely imaginary summand, hence yielding real values. With the definition

IR ∋ Γµ(∆n) = −Γµ(−∆n) =
∑

p∈P

eip∆n

L4
α+(p) · p̃µ

√

p̃2
(4.19)
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the hermitian matrix Tn,m appearing in eq. (4.18) can compactly be written as

Tn,m =
1

|Φm|2 ·








Φ0
mΓ0 + iΦ1

m
~Γ~Θ −iΦ1

mΓ0 − Φ0
m

~Γ~Θ (iΦ3
m − Φ2

m)~Γ~Θ (−iΦ3
m + Φ2

m)Γ0

Φ0
m

~Γ~Θ + iΦ1
mΓ0 −iΦ1

m
~Γ~Θ − Φ0

mΓ0 (iΦ3
m − Φ2

m)Γ0 (−iΦ3
m + Φ2

m)~Γ~Θ

(iΦ3
m + Φ2

m)~Γ~Θ −(iΦ3
m + Φ2

m)Γ0 Φ0
mΓ0 − iΦ1

m
~Γ~Θ iΦ1

mΓ0 − Φ0
m

~Γ~Θ

(iΦ3
m + Φ2

m)Γ0 −(iΦ3
m + Φ2

m)~Γ~Θ Φ0
m

~Γ~Θ − iΦ1
mΓ0 iΦ1

m
~Γ~Θ − Φ0

mΓ0








(4.20)

with the abbreviations Γµ ≡ Γµ(∆n) and ∆n = n−m. Therefore, the first order summand

of the power series in eq. (4.9) reading

Tr
[
AB−1

]
=

∑

n

Tr8×8 [Tn,n] = 0 (4.21)

is identical to zero and the first non-vanishing contribution is the second order term, which

can be evaluated by explicitly computing the 8 × 8 trace, yielding

Tr
[
AB−1

]2
=

∑

n1,n2

Tr8×8 [Tn1,n2Tn2,n1]

= −8 ·
∑

n1,n2

Φµ
n1Φ

µ
n2

|Φn1 |2 · |Φn2 |2
· |Γ(∆n)|2 . (4.22)

Cutting off the power series in eq. (4.9) after this first non-vanishing term, which is well

justified for sufficiently large values of the Yukawa coupling constant, the effective action

can be written as

Seff [Φ] = SΦ − Nf ·
(

∑

n

log(|Φn|8) +
(4ρ)2

y2
N

∑

n1,n2

|Γ(∆n)|2 Φ†
n1Φn2

|Φn1|2 · |Φn2 |2

)

(4.23)

−Nf · log det∗
(
B−1

)
− Nf · log det∗

(1+
2ρ

yN
F [Φ]

)

where the matrix F [Φ] has been defined in eq. (4.8).

Some remarks concerning the remaining determinants in the latter result are in order

here for the orientation of the reader. Here det∗ denotes the determinant over the sub-space

Vπ, which has the dimension 120. In contrast to all other terms appearing in the effective

action these determinants are not proportional to L4. They are therefore suppressed as

the lattice size L goes to infinity. Moreover, the very last term in eq. (4.23) even vanishes

on finite lattices when the Yukawa coupling constant yN becomes large. This is in contrast

to the determinant det∗(B−1) being independent of yN . However, it is nevertheless quite

instructive to consider these finite volume effects in more detail. This can at least be done

for the first determinant det∗(B−1), which can be exactly evaluated for the ansatz given

in eq. (3.2) taking only a constant and a staggered mode of the Higgs field into account.

In that case the inverse of B can also be described in terms of a constant and a staggered

mode according to

Φn/|Φn|2 = Φ̂ · N− 1
2

f ·
(

m̃ + s̃ · (−1)

P

µ
nµ

)

, m̃ =
m

m2 − s2
, s̃ =

s

s2 − m2
(4.24)
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which allows to determine the desired determinant in a similar manner as described in

section 3 yielding

log det∗
(
B−1

)
= −60 log (Nf ) + 8 log |m̃| + 56 log

∣
∣m̃2 − s̃2

∣
∣ . (4.25)

The obvious asymmetry in m and s is caused by the fact that the 8 zero modes Ψ0,ζǫk

are not included in the sub-space Vπ. The effect of the latter terms and especially the

asymmetry in m and s is clearly observed in corresponding Monte-Carlo simulations [16]

on small lattices and large values of the Yukawa coupling constant yN . Moreover, the result

in eq. (4.25) would also hinder the expectation value of the Higgs field from vanishing,

thus obscuring the potential existence of symmetric phases at large yN on small lattices.

However, as the lattice size increases these finite volume effects eventually disappear. In

the following we will therefore neglect the det∗ terms in the effective action (4.23), which

is well justified on sufficiently large lattices.

To establish the announced connection to a sigma-model we now consider the large

Nf -limit where the coupling constants scale according to

yN = ỹN , ỹN = const, λN =
λ̃N

Nf
, λ̃N = const, κN =

κ̃N

Nf
, κ̃N = const, (4.26)

and for the Higgs field we consider an ansatz in which the amplitude of the local vectors

Φn is fixed to ϕ ∈ IR according to

Φn =
√

Nf · ϕ · σn, |σn| = 1 (4.27)

where the four-component, space-time position dependent unit vectors σn are arbitrary. In

this setting the contributions to the (reduced) effective action are either of order O(Nf )

or O(1). Considering only the leading order terms, for which the fermion doublet number

Nf can be completely factorized out, then allows to fix the Higgs field amplitude ϕ by the

determination equation

0 = −4 · 1

ϕ2
+ 1 + 2λ̃N ·

(
ϕ2 − 1

)
. (4.28)

With this fixation of the Higgs field amplitude the model in eq. (4.23) becomes effectively

a non-local, four-dimensional, non-linear sigma-model in the large Nf -limit given by

Seff = −
∑

n1,n2

κeff
n1,n2

· σ†
n1

σn2 (4.29)

with the effective, non-local coupling matrix

κeff
n1,n2

=
16ρ2

ỹ2
Nϕ2

|Γ(∆n)|2 + κ̃N · ϕ2 ·
±4∑

µ=±1

δ∆n,êµ
. (4.30)

Here the notation ”non-local” simply refers to the fact, that the field σn at any lattice site

n couples itself to any other site of the lattice. This leaves nevertheless open the possibility

that the interaction is local in a field theoretical sense with exponentially decaying coupling
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strength [17]. We did, however, not investigate the question in this paper, since eventually

we are mostly interested in the small Yukawa coupling region.

Basically, the outcome in eq. (4.30) reproduces the result which was found for a Higgs-

Yukawa model based on Wilson fermions [12] with the only difference that the coupling

matrix in that case consisted only of nearest-neighbour couplings.

The phase diagram of the obtained sigma-model (4.29) can be determined analytically

by an additional large N -limit with N denoting here the number of components of the

vectors σn. The first step towards this evaluation is to remove the restriction |σn| = 1

by introducing an auxiliary one-component, real field λn. This can be done at least in

two ways. One can either encode the restriction |σn| = 1 as a δ-function [18] written in

terms of an integration of exp(iλn(|σn|2 − 1)) over λn, or alternatively, one can address

this restriction by introducing the field variables λn as Lagrange-multipliers [19]. Here we

follow the latter approach which leads us to the extended action

S[σ, λ] =
1

tN
·
{

∑

n1,n2

N∑

i=1

−κeff
n1,n2

· σi
n1

· σi
n2

+
∑

n

λn ·
(

N∑

i=1

[
σi

n

]2 − 1

)}

(4.31)

the minima of which can now be searched for without having to consider any restriction

on the Higgs field amplitude. Here, an additional parameter tN was introduced. For

tN = 1 the given action corresponds to the prior form of the action. This new parameter

is inserted, since it will allow to factorize a factor N out of the action as required by the

large N approach. This can be achieved by scaling tN according to

tN =
t̃N
N

, t̃N = const, (4.32)

where we choose the setting t̃N = 4, since this recovers our actual effective sigma-model at

N = 4.

The remaining problem to solve is to find the minimum of the action S[σ, λ]. However,

it is well known from investigations of pure sigma-models that the phase transitions of

such models cannot be correctly determined by evaluating the effective action S[σ, λ] in

eq. (4.31) directly by restricting the consideration to only some selected modes of the fields

σ and λ. (Doing so would yield a first order phase transition at κ̃N = 0.) This is in contrast

to the situation we discussed in section 3. Instead, we first integrate out all modes of all N

components of the field σ except for the constant and staggered modes. This can be done

by taking only the constant mode of the auxiliary field λn into account, i.e. λn ≡ λ = const.

Doing so reduces the action S[σ, λ] to

S[mi, si, λ] = − ln
[

det′
(

−κeff + λ
)]−N/2

+
1

tN

{
N∑

i=1

[
mi

]2 ·
〈

0
∣
∣
∣−κeff + λ

∣
∣
∣ 0

〉

+
N∑

i=1

[
si

]2 ·
〈

π
∣
∣
∣−κeff + λ

∣
∣
∣π

〉

− L4λ

}

, (4.33)

depending only on the real scalar λ and the amplitudes mi, si of the constant and staggered

modes, respectively. Here the notations |0〉 and |π〉 were used, denoting the constant and
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staggered modes (normalized by a factor 1/
√

L4) according to

|k〉 ≡
√

1

L4
eik·n (4.34)

being eigenvectors of κeff and det′ is the determinant neglecting the two latter modes. For

convenience, the introduced short-hand notation 0 ≡ (0, 0, 0, 0) and π ≡ (π, π, π, π) will

also be applied in the following where it is unambiguous.

One remark is in order here for the orientation of the reader. The performed Gauss-

integrations are only well-defined, if the involved eigenvalues of the operator −κeff + λ are

positive, which is not guaranteed at this point. However, this step will be justified (and

made more precise) a posteriori when a certain value for the scalar λ will be assumed by

solving the resulting gap equations. Here we will first continue with this formal expression

and postpone its further discussion to the end of this section.

To evaluate this latter determinant, the eigenvalues of the matrix κeff need to be known.

The eigenvectors are simply plane waves with wave vectors k ∈ P and one easily finds the

corresponding eigenvalues according to

∑

n2

κeff
n1,n2

· eikn2 =



2κ̃Nϕ2
4∑

µ=1

cos(kµ) +
16ρ2

ỹ2
Nϕ2

· q(k)



 · eikn1 (4.35)

where q(k) denotes the eigenvalues of the matrix |Γ(∆n)|2 given by

IR ∋ q(k) =
1

L4

∑

p∈P

α+(p) · α+(℘) · p̃ · ℘̃
√

p̃2 ·
√

℘̃2
, ℘ = k − p. (4.36)

For the numerical evaluation of this quantity it is useful to use some symmetries of q(k).

One has q(k) = q(k′) at least, if k′ is a permutation of the components of k, or if k′
µ = ±kµ

for all µ.

Now we can search for the absolute minima of the effective action in eq. (4.33). For

this purpose we relate the amplitudes mi, si to the values of the overall magnetization m

and staggered magnetization s, respectively, according to

mi =

√

L4

N
m and si =

√

L4

N
s. (4.37)

With this notation one directly obtains from the effective action in eq. (4.33) the following

expression in terms of the quantities m, s and λ

S[m, s, λ] =
N

2
Tr′ ln

[

−κeff + λ
]

+
N

t̃N
· m2 · L4 ·

(

−8κ̃Nϕ2 − 16ρ2

ỹ2
Nϕ2

q(0) + λ

)

+
N

t̃N
· s2 · L4 ·

(

+8κ̃Nϕ2 − 16ρ2

ỹ2
Nϕ2

q(π) + λ

)

− N

t̃N
L4λ, (4.38)

where the summation over the coupling matrix components has been performed by using

eq. (4.35) with the settings k = (0, 0, 0, 0) ≡ 0 and k = (π, π, π, π) ≡ π, respectively.
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Figure 4: Phase diagrams for L = ∞ with respect to the Yukawa coupling constant ỹN and the

hopping parameter κ̃N for several selected values of the quartic coupling constant λ̃N . The presented

phase structure was determined for ǫ = 10−1, while the black lines show the phase transition lines

obtained for ǫ = 10−3. An explanation of the ǫ-dependence of the presented results is given in the

text.

Analogously to det′, Tr′ denotes the trace neglecting the modes |0〉 and |π〉. We can now

derive the corresponding gap equations by differentiating with respect to m, s, and λ

leading to

0 = m ·
[

λ −
(

8κ̃Nϕ2 +
16ρ2

ỹ2
Nϕ2

· q(0)
)]

, (4.39)

0 = s ·
[

λ −
(

−8κ̃Nϕ2 +
16ρ2

ỹ2
Nϕ2

· q (π)

)]

, (4.40)

m2 + s2 = 1 − t̃N
4

1

L4

∑

k∈P
06=k 6=π



−κ̃Nϕ2
4∑

µ=1

cos(kµ) − 8ρ2

ỹ2
Nϕ2

q(k) +
λ

2





−1

. (4.41)
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Equation (4.39) implies that m or the given argument within the square brackets has

to vanish. An analogous observation can be drawn from eq. (4.40). For the investigation

of the phase structure we now consider two different scenarios for the amplitudes m and

s, namely a ferromagnetic phase (m 6= 0, s = 0) and an anti-ferromagnetic phase (m = 0,

s 6= 0). For each of these cases we can then derive a self-consistency relation:

1. For a ferromagnetic phase (FM) (m 6= 0, s = 0) one obtains from (4.39)

λ = 8κ̃Nϕ2 +
16ρ2

ỹ2
Nϕ2

· q(0) (4.42)

and hence the following self-consistency relation

0 < m2 = 1 − t̃N
4

1

L4

∑

k∈Pm(ǫ)
06=k 6=π

[

κ̃Nϕ2
4∑

µ=1

(1 − cos(kµ)) +
8ρ2

ỹ2
Nϕ2

(q(0) − q(k))

︸ ︷︷ ︸

Wm(k)

]−1

.

(4.43)

2. For an anti-ferromagnetic phase (AFM) (m = 0, s 6= 0) one obtains from (4.40)

λ = −8κ̃Nϕ2 +
16ρ2

ỹ2
Nϕ2

· q (π) (4.44)

and hence the self-consistency relation

0 < s2 = 1 − t̃N
4

1

L4

∑

k∈Ps(ǫ)
06=k 6=π

[

−κ̃Nϕ2
4∑

µ=1

(1 + cos(kµ)) +
8ρ2

ỹ2
Nϕ2

(q (π) − q(k))

︸ ︷︷ ︸

Ws(k)

]−1

.

(4.45)

Three further remarks shall be given here.

(i) The equations (4.43) and (4.45) are denoted as self-consistency relations because

the assumption of a (anti-)ferromagnetic phase becomes inconsistent, if the resulting

value for m2 (or s2, respectively) becomes non-positive. If both assumptions become

inconsistent simultaneously, this corresponds to a symmetric phase (SYM) with m =

s = 0, while the case m2 > 0 and s2 > 0 is denoted as a ferrimagnetic phase (FI).

(ii) For the ferromagnetic phase the choice of λ according to eq. (4.42) justifies the integra-

tion performed in eq. (4.33) a posteriori, because it sufficiently shifts the eigenvalues

2Wm(k) of the matrix −κeff +λ to make all of them positive, except for the constant

mode (k = 0) which was excluded from the Gauss-integration.

(iii) For the anti-ferromagnetic phase, in contrast, choosing λ according to eq. (4.44)

does not guarantee all eigenvalues 2Ws(k) of −κeff + λ to be positive. The Gauss-

integration in eq. (4.33) can therefore only be performed for all those modes 0 6= k 6= π
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Figure 5: Expectation values for the amplitudes of the constant (m: black curve) and staggered (s:

gray curve) modes for several selected values of the Yukawa coupling constant ỹN and the quartic

coupling parameters λ̃N = 0.0 and λ̃N = 0.1. The results were obtained for L = ∞.

which fulfill Ws(k) ≥ ǫ with an arbitrary lower bound ǫ > 0. The details of this

statement are presented in appendix B. The results of this more careful consideration

are already presented in eq. (4.43) and eq. (4.45). The only difference to the naive

result is that the set over which the sum has to be performed is reduced from P to

Ps(ǫ) with the definitions

Pm(ǫ) =
{

k ∈ P : Wm(k) ≥ ǫ
}

and Ps(ǫ) =
{

k ∈ P : Ws(k) ≥ ǫ
}

, (4.46)

where the introduction of the set Pm(ǫ) is actually unnecessary due to the previous

remark (ii).

The corresponding phase structure can now be obtained by numerically evaluating

equations (4.43) and (4.45). For some selected values of the quartic coupling λ̃N the

resulting phase diagrams with respect to the parameters κ̃N and ỹN are shown in figure 4.

All presented results were obtained for an infinite lattice, i.e. L = ∞. For ỹN → ∞ the

effective coupling matrix in eq. (4.30) converges to the coupling structure of a pure nearest-

neighbour sigma-model. One therefore expects a symmetric phase centered around κ̃N = 0

at large values of the Yukawa coupling constant ỹN as can be observed in the plots. For

decreasing ỹN the symmetric phase bends towards negative values of κ̃N . In the plots the

results for the phase transition lines obtained for ǫ = 10−1 and ǫ = 10−3 are compared

to each other. While the phase transition line to the ferromagnetic phase is unaffected by
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Figure 6: Expectation values for the amplitudes of the constant (m: black curve) and staggered (s:

gray curve) modes for several selected values of the Yukawa coupling constant ỹN and the quartic

coupling parameters λ̃N = 1.0 and λ̃N = 10.0. The results were obtained for L = ∞.

sending ǫ to zero as expected, the curves start to differ for the anti-ferromagnetic phase

transition at small values of ỹN . The discrepancy between these two lines can serve as an

indicator down to which value of ỹN the neglection of the modes with Ws(k) < ǫ can be

considered as a good approximation (besides the uncertainties arising from cutting off the

power series in eq. (4.9) at small values of ỹN ). We add here, that we chose the presented

parameter range in all phase diagrams such that the volume of the space of the considered

modes is at least 95% of the volume of the whole mode space, i.e. Vol(Ps(ǫ)) ≥ 0.95·Vol(P).

For ỹN → ∞ the volume of the neglected modes vanishes and the problem encountered

during the Gauss-integration in eq. (4.33) eventually disappears.

The order of the phase transitions can again be determined by calculating the ex-

pectation values of the amplitudes of the constant and staggered modes m and s directly

from equations (4.43) and (4.45). The corresponding results are presented in figure 5 and

figure 6. One clearly sees that the occurring phase transitions are of second order as one

would also expect from the limit ỹN → ∞ where the model becomes a sigma-model.

5. Summary and conclusions

In this paper we have studied analytically the phase structure of a chirally invariant lattice
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Higgs-Yukawa model, originally proposed by Lüscher. This was possible in the large Nf -

limit for small as well as for large values of the Yukawa coupling constant and it could

be shown that the model possesses a rich phase structure. Here we remark again that

although we are eventually interested in the physical setting Nf = 1 we expect the large

Nf phase diagram to be the same on a qualitative level. Thus, the large Nf limit can

provide valuable information for future calculations also for Nf = 1.

In section 3 we began by considering the model at small values of the Yukawa and

quartic coupling constant and argued that taking only the constant (m) and staggered (s)

modes of the Higgs field into account is sufficient for the determination of the phases in

that regime of the Yukawa and quartic coupling constant. We then presented an explicit

expression for the effective potential at tree-level in terms of m and s and showed the

corresponding phase diagrams for some selected values of the quartic coupling constant. In

these diagrams all possible phases, i.e. symmetric (m = 0, s = 0), ferromagnetic (m 6= 0,

s = 0), anti-ferromagnetic (m = 0, s 6= 0), and ferrimagnetic phases (m 6= 0, s 6= 0), could

be observed. Furthermore, we concluded from our result for the effective potential that the

occurring phase transitions from the symmetric to the ferromagnetic and anti-ferromagnetic

phases are of second order.

In the following section 4 we proceeded to the regime of large values of the Yukawa

coupling constant yN . We showed that for sufficiently large values of yN and arbitrary

values of the quartic coupling constant λN the model becomes an O(4)-symmetric, non-

linear sigma-model in the large Nf -limit up to some finite-volume terms. In particular,

this relation to a sigma-model has the consequence that a symmetric phase also exists at

large values of the Yukawa coupling constant. We determined the phase structure of the

latter sigma-model by an additional large N -limit with N denoting the number of Higgs

field components here. The corresponding phase diagrams revealed again a rich structure

consisting of symmetric, ferromagnetic, and anti-ferromagnetic phases separated by second

order phase transitions. The symmetric phase, however, was shown to emerge only in

the infinite volume limit. For small lattices, finite volume effects cause an asymmetry

in m and s which one would not expect in a pure sigma-model. These finite volume

effects may easily give rise to a misleading interpretation that a symmetric phase at strong

values of the Yukawa coupling constant does not exist. However, on sufficiently large

lattices the symmetric phase should become clearly observable and the asymmetry should

disappear.

The validity of our analytical results and in particular the latter predictions about

the symmetric phase at large yN have been confronted in ref. [16] with the results of

corresponding Monte-Carlo simulations including the chiral invariant fermions in a fully

dynamical manner.

A. Details of calculation I

In this appendix we would like to make up for the neglected derivation of eq. (4.14).
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Starting from eq. (4.11) one finds

Tr
[
AB−1

]r
=

∑

n1,...,nr

Tr8×8

([
AB−1

]

n1,n2
· . . . ·

[
AB−1

]

nr ,n1

)

(A.1)

=
∑

n1,...,nr

∑

ζ1ǫ1k1,...,ζrǫrkr

ζ′1ǫ′1k′1,...,ζ′rǫ′rk′r

∑

p1,...,pr∈P

eip1(n1−n2)

L4
· . . . · eipr(nr−n1)

L4

×Tr8×8

[

uζ1ǫ1k1(p1)α
ǫ1(p1)

(

B̂(p1)(Φ∗
n2

/|Φn2 |2)
)

ζ1ǫ1k1,ζ′1ǫ′1k′
1

[

uζ′1ǫ′1k′
1(p1)

]†

·uζ2ǫ2k2(p2)
︸ ︷︷ ︸

U(p1,p2)ζ′
1

ǫ′
1

k′
1

,ζ2ǫ2k2

×αǫ2(p2)
(

B̂(p2)(Φ∗
n3

/|Φn3 |2)
)

ζ2ǫ2k2,ζ′2ǫ′2k′
2

[

uζ′2ǫ′2k′
2(p2)

]†

· . . . · uζrǫrkr(pr)α
ǫr (pr)

×
(

B̂(pr)(Φ∗
n1

/|Φn1 |2)
)

ζrǫrkr,ζ′rǫ′rk′
r

[

uζ′rǫ′rk′
r(pr)

]†
]

=
∑

n1,...,nr

∑

p1,...,pr∈P

Tr8×8

[
r∏

i=1

eipi(ni−ni+1)

L4
|Φni+1|−2A(pi)

(

B̂(pi)(Φ∗
ni+1

)
)

U(pi, pi+1)

]

,

where the definition of the spinor basis transformation matrix U(p1, p2) given in eq. (3.4)

was used.

B. Details of calculation II

In this appendix we want to deal with the possibly non-positive eigenvalues of the operator

−κeff+λ, which would not allow the option of performing the Gauss-integration in eq. (4.33)

over all modes, in a more precise manner. We therefore restart our calculation beginning in

eq. (4.31). Now we perform the Gauss-integration solely over those modes k ∈ P, 0 6= k 6= π

which have their corresponding eigenvalue of the operator −κeff +λ not smaller than 2ǫ > 0.

We denote the subset of these modes as P(ǫ, λ). According to eq. (4.35) it is given as

P(ǫ, λ) =
{

k ∈ P : −κ̃Nϕ2
4∑

µ=1

cos(kµ) − 8ρ2

ỹ2
Nϕ2

· q(k) +
λ

2
≥ ǫ

}

. (B.1)

Performing the Gauss-integration only over these modes the action reduces to

S[mi, si, λ, σi
k] = − ln

[

det′′
(

−κeff + λ
)]−N/2

+
1

tN

{
N∑

i=1

[
mi

]2 ·
〈

0
∣
∣
∣−κeff + λ

∣
∣
∣ 0

〉

− L4λ

+

N∑

i=1

[
si

]2 ·
〈

π
∣
∣
∣−κeff + λ

∣
∣
∣π

〉

+

N∑

i=1

∑

k∈P̄(ǫ,λ)
06=k 6=π

[
σi

k

]2 ·
〈

k
∣
∣
∣−κeff + λ

∣
∣
∣ k

〉
}

(B.2)

=
N

2
Tr′′ ln

[

−κeff + λ
]

+
N

t̃N
· m2 · L4 ·

(

−8κ̃Nϕ2 − 16ρ2

ỹ2
Nϕ2

q(0) + λ

)

+
N

t̃N
· s2 · L4 ·

(

+8κ̃Nϕ2 − 16ρ2

ỹ2
Nϕ2

q(π) + λ

)

− N

t̃N
L4λ

+
∑

k∈P̄(ǫ,λ)
06=k 6=π

N

t̃N
· σ2

k · L4 ·



−2κ̃Nϕ2
4∑

µ=1

cos(kµ) − 16ρ2

ỹ2
Nϕ2

q(k) + λ



 , (B.3)
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where σi
k denote the amplitudes of the excluded modes with k ∈ P̄(ǫ, λ), 0 6= k 6= π and

P̄(ǫ, λ) ≡ P/P(ǫ, λ) is the complement of P(ǫ, λ). Here the notation

σi
k =

√

L4

N
σk (B.4)

was introduced correspondingly to eq. (4.37) and the plane wave modes |k〉 were explicitly

given in eq. (4.34). The determinant det′′ and the trace Tr′′, respectively, are now only

performed over the modes k ∈ P(ǫ, λ), 0 6= k 6= π, as desired. The resulting gap equations

can now be obtained by differentiating the effective action with respect to m, s, λ and all

σk. This leads again to eq. (4.39) and eq. (4.40). Only the third one, eq. (4.41), is modified

yielding now

m2+s2+
∑

k∈P̄(ǫ,λ)
06=k 6=π

σ2
k = 1− t̃N

4

1

L4

∑

k∈P(ǫ,λ)
06=k 6=π



−κ̃Nϕ2
4∑

µ=1

cos(kµ) − 8ρ2

ỹ2
Nϕ2

q(k) +
λ

2





−1

. (B.5)

Furthermore, one obtains one additional gap equation for every mode k ∈ P̄(ǫ, λ), 0 6= k 6=
π according to

0 = σk ·



λ −



+2κ̃Nϕ2
4∑

µ=1

cos(kµ) +
16ρ2

ỹ2
Nϕ2

q(k)







 ∀k ∈ P̄(ǫ, λ), 0 6= k 6= π. (B.6)

Again we consider the scenario of a purely ferromagnetic phase and the scenario of a

purely anti-ferromagnetic phase for the investigation of the phase structure. The only

particularity here is that we assume all σk to be zero in both cases. (In principle, with this

approach one could also study the phase structure of some of the amplitudes σk, but this is

beyond our interest here.) We thus arrive directly at the prior equations (4.42) and (4.44),

respectively, fixing the value of λ as before. With this fixation of λ the subset P(ǫ, λ)

now becomes Pm(ǫ) for the ferromagnetic phase as already defined in eq. (4.46). For the

anti-ferromagnetic phase it becomes Ps(ǫ). We have now arrived at the final results for the

self-consistency equations that were already presented in eq. (4.43) and eq. (4.45).

In order to get a rough estimate about the validity of neglecting the modes k ∈ P̄(ǫ, λ)

one should check the volume of this subset and compare it to the volume of the full set P
as we did in our discussion in the main text.
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